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Recently we proposed a theory of point-contact spectroscopy and argued that the splitting of zero-bias
conductance peak in electron-doped cuprate superconductor point-contact spectroscopy is due to the coexist-
ence of antiferromagnetic �AF� and d-wave superconducting orders �Phys. Rev. B 76, 220504�R� �2007��. Here
we extend the theory to study the tunneling in the ferromagnetic metal/electron-doped cuprate superconductor
�FM/EDSC� junctions. In addition to the AF order, the effects of spin polarization, Fermi-wave vector mis-
match between the FM and EDSC regions, and effective barrier are investigated. It is shown that there exists
midgap surface-state contribution to the conductance to which Andreev reflections are largely modified due to
the interplay between the exchange field of ferromagnetic metal and the AF order in EDSC. Low-energy
anomalous conductance enhancement can occur which could further test the existence of AF order in EDSC.
Finally, we propose a more accurate formula in determining the spin-polarization value in combination with the
point-contact conductance data.
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I. INTRODUCTION

Using point-contact technique to measure the spin polar-
ization in ferromagnetic metal/conventional superconductor
�FM/CS� junctions was pioneeringly done by Soulen et al.1

and Upadhyay et al.2 in 1998. Their works showed that de-
termining the spin polarization at Fermi surface is essentially
not an easy task. That leads to some definitions of spin po-
larization such as “tunneling polarization” proposed by Ted-
row and Meservey3 and “point-contact polarization” pro-
posed by Soulen et al.1 One year later, Zhu and co-workers4,5

and Kashiwaya et al.6 utilized the ideas to study the spin-
polarized quasiparticle transport in ferromagnet/d-wave su-
perconductor junctions. Zhu and co-workers4,5 predicted that
conductance resonances occur in a normal-metal-
ferromagnet/d-wave superconductor junction and in a fol-
lowing paper, they further studied the junctions by solving
the Bogoliubov–de Gennes �BdG� equations within an ex-
tended Hubbard model which included the proximity effect,
the spin-flip interfacial scattering at the interface, and the
local magnetic moment. They reported that the proximity can
induce order-parameter oscillation in the ferromagnetic re-
gion. In contrast, Kashiwaya et al.6 focused on the spin cur-
rent and spin filtering effects at the magnetic interface. In the
works of Zutic and Valls,7,8 they first considered the effect of
Fermi-wave vector mismatch �FWM� and pointed out that if
one neglects FWM, the effect of spin polarization invariably
leads to the suppression of Andreev reflection �AR�. Among
many other junction studies, Dong et al.9 studied a little dif-
ferent junction which forms a four layer sandwich, i.e.,
FM / I /d+ is /d-wave junctions, by taking into account the
roughness of the interfacial barrier and broken time-reversal
symmetry states.

The pioneering works of Soulen et al.1 and Upadhyay et
al.2 have inspired several experimental studies10–17 as well.
Especially normal and ferromagnetic metal/conventional su-
perconductors or s-wave superconductor �FM/s-wave SC�

junctions have been intensely studied experimentally and
theoretical modelings �Blonder-Tinkham-Klapwijk �BTK�
formula18 or its extension� had a good fitting with the con-
ductance data. Recently Linder and Sudbø19 presented a the-
oretical study of FM/s-wave SC junction that investigated
the possibility of induced triplet pairing state in the ferro-
magnetic metal side. They have also used the BTK approach
but allowed for arbitrary magnetization strength and direc-
tion in the ferromagnet, arbitrary spin-active barrier, arbitrary
FWM, and different effective masses in the two sides of the
junction. As is expected, there is no retroreflection process
when an exchange field is present. However, they pointed out
that retroreflection can occur under some conditions.19

If one replaces the conventional superconductor by the
high-temperature or d-wave superconductor into the junc-
tion, it will occur several novel phenomena due to its d-wave
pairing symmetry, complex band structure, and rich magnetic
properties. Of particular interest, in the electron-doped side
of cuprate superconductors �EDSC�, it is strongly suggested
that antiferromagnetic �AF� order may coexist with the
d-wave superconducting order, especially in the underdoped
and optimally doped regimes.20 In this paper, we shall ex-
plore the possible novel phenomena in the FM/EDSC junc-
tion case, taking into account the interplay between antifer-
romagnetic order and spin polarization. The ideas and
models developed in FM/CS junctions in the literature will
be applied to the current FM/EDSC junction cases.

This paper is organized as follows. In Sec. II, the basic
formulation is given. We set up the condition of the junction
and generalize the BdG equations to include AF order pa-
rameter. As the formal process, we utilize WKBJ approxima-
tion to obtain the more simple Andreev-type equations,
which are then solved to determine the four spin-dependent
reflection coefficients �detailed derivations are given in Ap-
pendix A�. Formulas of charge and spin conductances are
derived. Our main results and discussions are in Sec. III. In
Sec. III A, the condition of midgap surface states was de-
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rived �details are given in Appendix B�. In Sec. III B, the
effect of FWM was studied. In Secs. III C and III D, we
discuss the effects of spin polarization and generalized effec-
tive barrier, respectively. It is shown that anomalous conduc-
tance enhancement can occur at low energies which could
provide a further test for the existence of AF order in EDSC.
In Sec. III E, a more general formula for determining the
spin polarization is proposed in terms of the experimental
zero-bias conductance data. Finally in Sec. IV, a brief con-
clusion is given.

II. FORMALISM

Our formulation is given based on the following assump-
tions. We consider a point contact or planar FM/I/EDSC
junction where the superconductor overlayer is coated with a
clean size-quantized ferromagnetic-metal overlayer of thick-
ness d that is much shorter than the mean-free path l of
normal electrons. The interface is assumed to be perfectly
flat and infinitely large. Considering l→� limit, the discon-
tinuity of all parameters at the interface can be neglected,
except for the SC order parameter to which the proximity
effect is ignored.21 When SC and AF orders coexist, quasi-
particle �QP� excitations of an inhomogeneous supercon-
ductor can have a coupled electron-hole character associated
with the coupled k and k+Q�Q= �� ,��� subspaces. QP
states are thus governed by the generalized BdG
equations20,22

Eu1��x� = Ĥ�u1��x� +� dx���s,r�v1�̄�x�� + �u2��x� ,

Ev1�̄�x� =� dx����s,r�u1��x�� − Ĥ�v1�̄�x� + �v2�̄�x� ,

Eu2��x� = �u1��x� + Ĥ�u2��x� −� dx���s,r�v2�̄�x�� ,

Ev2�̄�x� = �v1�̄�x� −� dx����s,r�u2��x�� − Ĥ�v2�̄�x� ,

�1�

where s�x−x�, r��x+x�� /2, Ĥ��−�2�2 /2m−EF
F,S−�J,

with J the exchange energy and �=↑ �↓� for up �down� spin
��̄=−��, and � is the AF order parameter. ��s ,r� is the
Cooper pair order parameter in terms of relative and center-
of-mass coordinates. In the FM region, we define EF

F

��2qF
2 /2m= ��2qF↑

2 /2m+�2qF↓
2 /2m� /2 as the spin averaged

value. It differs from the value in the superconductor, EF
S

��2kF
2 /2m, to which a FWM can occur between the FM and

EDSC regions.8 In Eq. �1�, the wave functions u1 and v1 are
considered related to the k subspace, while u2 and v2 are
related to the k+Q subspace. Comparing to the first and
second lines of Eq. �1�, minus signs associated with the
��s ,r� term in the third and fourth lines occur due to the
symmetry requirement, ��k+Q�=−��k�, for a dx2−y2-wave
superconductor in k space. At Fermi level, the dx2−y2-wave

SC gap is ��k̂F���0 sin 2	, with �0 the gap magnitude and
	 the azimuthal angle relative to the x axis.

In a d-wave superconductor, it is useful to consider a
junction to which the superconductor surface is allied along
the �110� direction. A thin insulating layer exists between the
ferromagnetic metal and the superconductor �see Fig. 1� to
which the barrier potential is assumed to take a delta func-
tion, V�x�=H
�x�. Considering that an up-spin electron is
injected into the FM/I/EDSC junction from the ferromag-
netic metal side, there are four possible reflections as fol-
lows. �a� Normal reflection �NR�: reflected as electrons. �b�
Andreev reflection �AR�: reflected as holes due to electron
and hole coupling in the k subspace. �c� Antiferromagnetic-
normal reflection �AF-NR�: reflected as electrons due to the
coupling of k and k+Q subspaces. �d� Antiferromagnetic-
Andreev reflection �AF-AR�: reflected as holes due to elec-
tron and hole coupling in the k+Q subspace �see Fig. 1�.

In addition to the effect of AF order, AR is largely modi-
fied due to the exchange field of ferromagnetic metal when
electron is not normally incident into the EDSC region. Ow-
ing to the momentum conserved parallel to the interface,
Snell’s law6,8,23 requires that

qF� sin 	N� = qF�̄ sin 	A�̄ = kF sin 	S�, �2�

where 	N�, 	A�̄, and 	S� are the angles of NR, AR, and trans-
mission into the SC, respectively �see Fig. 1�. Incident angle
	N� is typically not equal to the AR angle 	A�̄ except when
J=0 or for normal incidence. Assuming that there is no

FIG. 1. Schematic plot showing all possible reflection and trans-
mission processes for an up-spin electron incident into the FM/I/
EDSC junction. An AF order is assumed to exist in the EDSC. For
convenience for a d-wave superconductor, kx axis is chosen to be
along the �110� direction. The right-bottom inset shows a given
Fermi-wave vector kF= �kF ,ky ,kz� and its coupled AF wave vector
kF+Q�kFQ= �−kF ,ky ,kz�. Both vectors are tied to the Fermi sur-
face, which is approximated by a square �thick line�. NR, AR, AF-
NR, and AF-AR stand for normal reflection, Andreev reflection,
antiferromagnetic-normal reflection, and antiferromagnetic-
Andreev reflection, respectively. Their corresponding reflection
angles are also shown. For the case of an incident down-spin elec-
tron, all spin indices just reverse.
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FWM and qF↓�kF�qF↑, ranges of six normal and Andreev
reflection angles are 0�	N↑�sin−1�kF /qF↑��	c2, 0�	A↑
�sin−1�qF↓ /qF↑��	c1, and 0�	S↑ ,	S↓�sin−1�qF↓ /kF�,
while 	A↓ and 	N↓ can be any angles. For AF reflections, the
angles 	A�

AF=�−	A� and 	N�
AF =	N�, respectively. It is noted

that when 	N↑ is within the range 	c1�	N↑�	c2, x compo-
nent of the wave vector, �qF↓

2 −kF
2 sin2 	S↑, becomes purely

imaginary for the AR process.6,8 Although spin-down elec-
tron as a propagating wave is impossible for AR, it can still
transmit into the superconductor side.

As emphasized by Kashiwaya et al.,6 one can define two
types of conductance in a FM, namely, the charge and spin
conductances. As a matter of fact, the normalized angle and
spin-dependent tunneling charge conductance are given by

Cq� = 1 − �RN��2 + a��RA�̄�2 + �RN�
AF�2 − a��RA�̄

AF�2, �3�

where a↓�1 and a↑�L↓�2↓ /L↑�1↑, with �1↑
=cos 	N↑ /cos 	S↑, �2↓=cos 	A↓ /cos 	S↑, and L�

=��qF /kF��1−�J /EF
F�. Detailed derivations of all four re-

flection coefficients �RN�, RA�̄, RN�
AF, and RA�̄

AF� are given in
Appendix A. Similarly, the normalized angle and spin-
dependent spin conductance is given by

Cs� = 1 − �RN��2 − a��RA�̄�2 + �RN�
AF�2 − a��RA�̄

AF�2. �4�

Comparing to the results of charge conductance in Eq. �3�,
due to the spin imbalance induced by the exchange field,
different signs of RA�̄ terms occur in the spin conductances.
Consequently normalized total charge �spin� conductance is
given by

Gq�s��E� = Gq�s�↑�E�  Gq�s�↓�E� , �5�

where + �−� sign is for charge �spin� channel and

Gq�s���E� =
1

Gq�s�
N �

�

�

d	N� cos 	N�Cq�s���E,	N��P�. �6�

The lower and upper integration limits of � and � are re-
stricted by Snell’s law �as discussed before� or experimental
setup. In practice, integration over two separate ranges of
incident angle, i.e., 0� �	N���	c1 and 	c1� �	N���	c2
should be carried and results are added up to the total con-
ductance. In Eq. �6�, the normal-state charge �spin� conduc-
tance

Gq�s�
N = �

−�/2

�/2

d	N� cos 	N��CN↑P↑  CN↓P↓� , �7�

where

CN��	N�� =
4�1L�

�1 + �1L� + 2iZ�2
, �8�

with Z=mH /�2kF the barrier. In both Eqs. �6� and �7�, we
have presented a factor P�= �EF

F+�J� /2EF
F, which can be in-

terpreted as the probability of spin-� incident electron as a
function of the exchange energy.6,8,19 When J=0, P↑= P↓
=1 /2.

In addition to the conductances, the normalized total
charge �spin� current can be given by

Iq�s� = Iq�s�↑  Iq�s�↓, �9�

where

Iq�s�� =
1

Iq�s�
N �

−�

�

dE�
�

�

d	N� cos 	N�Cq�s���E,	N��P�qF�,

�10�

with

Iq�s�
N = �

−�

�

dE�
−�/2

�/2

d	N� cos 	N��CN↑P↑qF↑  CN↓P↓qF↓� .

�11�

Charge and spin currents and their conversion are important
probes for spin-related phenomena such as those in spin Hall
effect.

III. RESULTS AND DISCUSSIONS

Both charge and spin conductances are important probes
for tunneling in spin-polarized junctions. In this paper, we
will focus on the charge conductance however. Moreover, for
simplicity, all the results presented are for normal incidence
�	N�=0�.

A. Midgap surface states

Detailed derivations of the midgap surface states �MSSs�
in the current FM/EDSC junction are given in Appendix B.
Basically it is an extension of the works of Hu21 and Liu and
Wu.20 The boundary condition that leads to the MSS is the
wave function �N��x=−d�=0 for a free boundary at x=−d.
Consequently one obtains the following condition for the
MSS �see Appendix B�:

e−2ik1�dE+ + e2ik1�dE− = 2� , �12�

where E�E��� , with ��� =��E+�J�2−�2−�2 and inci-
dent spin-� electron is assumed to have wave vector k1�

along the x direction.
In case of J=0, the result is reduced to our previous case

without spin polarization.20 In case of J=�=0, the result is
reduced to the case of Hu,21 i.e.,

e4ik1d = −
E + ��

E − ��
, �13�

where ����E2−�2. The most crucial result of the above is
that there exists a zero-energy state which is responsible for
the zero-bias conductance peak �ZBCP� widely observed in
hole-doped dx2−y2-wave cuprate superconductors.21 When J
=0 but ��0, zero-energy state no longer exists such that the
energy of the existing state is always finite �E=� in the limit
of d=0�. This leads to the splitting of the ZBCP. When J is
also finite, there will be further effect caused by spin polar-
ization although the splitting peak remains at E=� in the
limit of d=0. It is interesting to note that beyond the quasi-
classical approximation, a more accurate calculation for the
surface bound-state energies in dx2−y2-wave and other uncon-
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ventional cuprate superconductors was reported by Walker et
al.24

B. Effect of Fermi-wave-vector mismatch

Tunneling conductances are in general strongly modified
by the effect of FWM.8,19 In our case, due to the presence of
the AF order, the conductance spectra are somewhat different
from those obtained by Zutic and Valls8 and Linder and
Sudbo.19 Here we introduce a parameter

L0 �
qF

kF
�14�

to account for the effect of FWM. Both L0, greater and
smaller than 1, cases are considered. As shown in Figs. 2–4
for the normalized charge conductance Gq, the effect of
FWM is typically strong when L0�1, while it has relatively
minor effect when L0�1 �that is, Gq changes little from the
no FWM L0=1 case�. As first pointed out by Blonder and
Tinkham,25 FWM can be interpreted as a type of barrier
which could enhance the conductance near zero bias.

In our previous paper,20 it was shown that ZBCP of a
dx2−y2-wave superconductor can be split by the AF order �.
No spin-active barrier,6,19 external magnetic field, and spin-
polarization effects were considered in our previous case
though. Previously Zutic and Valls8 had given a detailed
analysis of the FWM effect on the conductance in
ferromagnet/s-wave and d-wave superconductor junctions.
Here we show how FWM influences the conductance in the
current case and point out the key physics. Figure 2 plots Gq
for various L0 with barrier Z=0, AF order �=0.5�0, and
spin polarization X=0.5 �see Eq. �17� for the definition of X�.
One sees that the effect of FWM is most noticeable at large
FWM �L0=0.2 case� to which a ZBCP is developed, while
the spectra are humdrum when L0�1. Since no barrier �Z
=0� is considered, no effect of AF order and spin polariza-
tion is seen in terms of peak splitting. Note that normalized

zero-bias conductance is not equal to 2 due to the presence of
AF order and spin polarization. In order to compare to the
case of hole-doped high-Tc superconductors �without AF or-
der�, Fig. 3 plots Gq at different values of L0 with �=X=0
and Z=1. One sees that ZBCP is largely enhanced by the
FWM effect �see L0=0.2 case�. Thus FWM can significantly
enhance the number of midgap surface states near zero-bias
voltage.

Aiming to electron-doped cuprate superconductors, Fig. 4
shows the effect of FWM on the splitting peak when the AF
order is present ��=0.5�0�. Here barrier Z=1 and spin po-
larization X=0.5. In contrast to the case of �=0 in Fig. 3,
FWM actually reduces the number of midgap surface states

FIG. 2. �Color online� Effect of FWM on normalized charge
conductance spectra Gq for various wave-vector mismatch values
L0 with fixed barrier Z=0, AF order �=0.5�0, and spin polariza-
tion X=0.5.

FIG. 3. �Color online� Effect of FWM on normalized charge
conductance spectra Gq for various wave-vector mismatch values
L0 with fixed barrier Z=1, AF order �=0, and spin polarization
X=0. This can be considered as the case of hole-doped cuprate
superconductors without AF order and in the absence of spin
polarization.

FIG. 4. �Color online� Effect of FWM on normalized charge
conductance spectra Gq for various wave-vector mismatch values
L0 with fixed barrier Z=1, AF order �=0.5�0, and spin polariza-
tion X=0.5. FWM causes the reduction of conductance at zero bias,
while enhancing the splitting peak associated with the AF order.
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near zero bias. At the same time, it enhances the strength of
the splitting peak associated with the AF order. Following
the idea of Blonder and Tinkham25 such that FWM can be
interpreted as a type of barrier, the enhancement of ZBCP in
Fig. 3 and the reduction of zero-bias conductance in Fig. 4
are a natural outcome at large FWM. In principle, the effect
of FWM should be included when a serious calculation is
performed for spin-polarized conductances.

C. Effect of spin polarization

In the literature, there exist different definitions of spin
polarization. One example is the “tunneling polarization”
proposed by Tedrow and Meservey.3 In point-contact experi-
ment, the more suitable definition is the so-called “contact
polarization”1

Pc =
N↑�EF�vF↑ − N↓�EF�vF↓

N↑�EF�vF↑ + N↓�EF�vF↓
, �15�

where vF� and N��EF� are, respectively, the Fermi velocity
and DOS at Fermi level for spin-� electron. Since I�

�N��EF�vF�, Eq. �15� is identical to

Pc =
I↑ − I↓
I↑ + I↓

. �16�

However, the most natural definition of spin polarization is

X �
N↑�EF� − N↓�EF�
N↑�EF� + N↓�EF�

. �17�

In ballistic point-contact situation, the electron density of
states in the presence of an exchange field can be written as
N��EF�=qF�

2 A /4�, where A is the area of the interface. Thus
X=J /EF

F, with EF
F��2qF

2 /2m= ��2qF↑
2 /2m+�2qF↓

2 /2m� /2.17

In Sec. III E, we will show that spin polarization X can be
determined by a general formula in combination with the
experimental conductance data.

Note that current quasiparticle wave function of BdG
equations has four components due to the presence of the AF
order. In the limit of Z=0 and without spin polarization �X
=0�, normalized charge conductance has a value of 2 as ex-
pected �see Fig. 5�. With a finite AF order ��=0.5�0�, the

resulting effective gap magnitude is about �̃	1.12�0 �see

Fig. 5�. In general, at E��̃, effect of spin polarization is to
suppress the conductance. When FWM is absent �L0=1� to-
gether with Z=0, normal reflection has no contribution and
Andreev reflection actually dominates the tunneling process

for E��̃.18 In our current case, Andreev reflection involves
contributions from both RA and RA

AF channels.
The most interesting results occur when the barrier Z is

finite. When the AF order �=0 �as for the case of hole-
doped cuprate superconductors� to which RN

AF=RA
AF=0,

ZBCP appears whose �normalized� strength is largely sup-
pressed due to the strong spin-polarization effect �see Fig. 6�.
However, as seen in Fig. 7, when AF order is finite ��
=0.5�0�, in contrast, the strengths of both the zero-bias con-
ductance and the splitting peak turn out to get enhanced by
the strong spin-polarization effect. This “anomalous conduc-

tance enhancement” phenomenon is in drastic contrast as
compared to the ZBCP associated with �=0 case �Fig. 6�.
These somewhat surprising results arise due to a significant
increase of �RN

AF� and at the same time, a significant decrease
of �RA

AF� for large X cases—a consequence of the interplay
between AF order and spin polarization. Since �RN

AF� contrib-
utes positively to the conductance, while �RA

AF� contributes
negatively to the conductance �see Eq. �3��, resultantly they
cause the anomalous conductance enhancement at low ener-
gies �E���. It should be emphasized that this low-energy
conductance enhancement is not due to the spin-flip effect
which is not considered in this paper. At higher energies, E
��, the conductances behave more normally such that they
get suppressed due to the spin-polarization effect. Anoma-
lous conductance enhancement at low energies can serve as a

FIG. 5. �Color online� Effect of spin polarization on normalized
charge conductance spectra Gq for various spin-polarization values
X with fixed barrier Z=0, AF order �=0.5�0, and without FWM
�L0=1�.

FIG. 6. �Color online� Effect of spin polarization on normalized
charge conductance spectra Gq for various spin-polarization values
X with fixed barrier Z=1, AF order �=0, and without FWM �L0

=1�. This is considered an example of the hole-doped cuprate su-
perconductor without AF order and FWM.
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test to see whether there is an significant AF order in
electron-doped cuprate superconductors.

Interface barrier and band structure are in general having
strong effect on spin polarization. Kant et al.12 have built an
“extended interface” model to illustrate the decay of spin
polarization. Besides, Mazin had a detailed discussion on the
definition of spin polarization and band-structure effects in
spin polarization.26

D. Effect of effective barrier

In the study of the tunneling transition in Cu-Nb point
contacts, Blonder and Tinkham25 pointed out that barrier is
not the only source for normal reflection and in a more real-
istic system, one should consider “impedance” or FWM as
well which results in normal reflection even with no barrier
present. They proposed an effective barrier Zeff= �Z2+ �1
−r�2 /4r�1/2, where r is the Fermi velocity ratio. They showed
that effective barrier has an obvious effect on the conduc-
tance when E��0, as shown in Fig. 2 of Ref. 25. Here we
generalize their idea to consider a spin, FWM, and angle
dependent effective barrier Zeff,

8,25

Zeff � �Z2 + �1 − L��2/4L��1/2/cos 	S�, �18�

where L�=qF� /kF corresponds to the spin-dependent FWM.
It is noted that we are not considering the spin-active barrier
which has spin filtering effects and can lead to the ZBCP
splitting.6,19 Instead we propose a possible alternative
mechanism to account for the decay of spin polarization.
Based on the generalized effective barrier, spin-up and spin-
down particles experience different strengths of effective
barrier that causes spin-up and spin-down currents to de-
crease at different speed as compared to the current in the
absence of barrier. Consequently, Zeff can modify the values
of I↑− I↓ �and thus Pc� dramatically. With this strong effect at
work, the decay of spin polarization should not be dominant

by the spin-flitting process in the point-contact spin-
polarization case.

As seen in Eq. �18�, Zeff can differ significantly from Z,
especially when Z is small. Essentially their difference can
be measured by spin-polarized tunneling experiments. In Fig.
8, we compare the effects of Z and Zeff on the conductance to
bare barrier Z set to zero and vary the FWM L0 value. For
Z=0 and 	S�=0, Zeff= ��1−L��2 /4L��1/2 �see Eq. �18��. In
our case, we have also included AF order and spin polariza-
tion. The difference is most noticeable when FWM is large
�L0=0.2 case�. Since Z=0, AF order and spin polarization
have little effect at small FWM. However, when FWM is
large, AF order and spin polarization can have a strong effect
such that a splitting peak can develop at E
�=0.5�0 with
the effective barrier Zeff �see Fig. 8�. This supports the idea
of Blonder and Tinkham25 of “impedance” mismatch which
enhances the normal reflection.

E. General formula for determining the spin polarization

Based on the phenomenon of Andreev reflection, Soulen
et al.1 proposed a formula for determining the point-contact
spin polarization Pc �see Eqs. �15� and �16�� when the nor-
malized zero-bias conductance data is compared. Their origi-
nal form was

G�0�/GN = 2�1 − Pc� , �19�

which is valid only when FWM is absent.11 Since Andreev
reflection could be strongly modified due to the FWM effect,
it is useful to replace Eq. �19� by

G�0�/GN = �1 + �RA�2 − �RA
AF�2��1 − Pc� , �20�

where RA and RA
AF are the AR and AF-AR coefficients, re-

spectively. Equation �20� can be reduced to Eq. �19� when
the exchange energy J is set to zero in RA and the AF order
� is set to zero in RA

AF. Note also that the parameter X should
be set to zero when the “contact polarization” Pc is deter-
mined under the idea of Soulen et al.1

FIG. 7. �Color online� Effect of spin polarization on normalized
charge conductance spectra Gq for various spin-polarization values
X with fixed barrier Z=1, AF order �=0.5�0, and without FWM
�L0=1�. Low-energy anomalous conductance enhancement arises
due to AF contributions �see text for details�.

FIG. 8. �Color online� Effect of effective barrier Zeff on normal-
ized charge conductance spectra Gq for various values of FWM L0.
AF order �=0.5�0 and spin polarization X=0.5. The bare barrier Z
is set to zero, while Zeff is given by Eq. �18�.
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Here we propose a more general formula for determining
the spin polarization

G�0�/GN = A↑ + A↓, �21�

where

A↑ = �
�

�

d	N� cos 	N��1 + a↑�RA↓�2 − a↑�RA↓
AF�2�P↑ �22�

and

A↓ = �
�

�

d	N� cos 	N��1 + �RA↑�2 − �RA↑
AF�2�P↓. �23�

Here RA�=RA��L0 ,X ,� ,	N�� and RA�
AF=RA�

AF�L0 ,X ,� ,	N��
with E=0. Equation �21� is a natural result of our earlier
formalism. It is regarded as the generalization of Eq. �19� of
Soulen et al.,1 which includes the effects of FWM, spin po-
larization, AF order, as well as the incident angle.

IV. CONCLUSIONS

Tunneling experiment provides a useful tool for probing
the properties of a superconductor such as the magnitude and
symmetry of the superconducting order parameter, quasipar-
ticle density of states, and any existing competing orders. In
fact, tunneling experiment is also a powerful probe for inves-
tigating the spin-charge separation in connection with the
spin-injection techniques. This involves both charge imbal-
ance and spin imbalance studies.

In this paper, we have presented a detailed study of the
tunneling conductance spectra of ferromagnetic metal/
electron-doped superconductor junctions, taking into account
an AF order existing in the electron-doped superconductor.
Interesting result, such as low-energy anomalous conduc-
tance enhancement, occurs as a result of the interplay be-
tween AF order and spin polarization �see Fig. 7�. These
results in turn provide a further opportunity to test whether
there is an significant AF order in electron-doped cuprate
superconductors.
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APPENDIX A: REFLECTION COEFFICIENTS

Under the WKBJ approximation,18,21,27–31 the wave func-
tions in the generalized BdG �Eq. �1�� can be approximated
by

�
u1�

v1�̄

u2�

v2�̄

� =�
eikF·rũ1�

eikF·rṽ1�̄

eikFQ·rũ2�

eikFQ·rṽ2�̄

� . �A1�

Thus one obtains a set of Andreev equations in the x direc-
tion,

Eũ1��x� = H�ũ1��x� + ��k̂F�ṽ1�̄�x� + �ũ2��x� ,

Eṽ1�̄�x� = ���k̂F�ũ1��x� − H�ṽ1�̄�x� + �ṽ2�̄�x� ,

Eũ2��x� = �ũ1��x� − H�ũ2��x� + ��k̂FQ�ṽ2�̄�x� ,

Eṽ2�̄�x� = �ṽ1�̄�x� + ���k̂FQ�ũ2��x� + H�ṽ2�̄�x� , �A2�

where H�=−
i�2kF

m
d
dx −�J and x is the coordinate normal to the

interface. The dx2−y2-wave SC gap ��k̂F�=−��k̂FQ�
��0 sin 2	 with 	 the azimuthal angle relative to the x axis.
In obtaining Eq. �A2�, the Fourier transform of the Cooper
pair order parameter ��s ,r� from relative coordinate s to k
space is assumed to take the form ��k ,r�=��k̂F���x�, with
��x� the Heaviside step function.21,27

Solving Eq. �A2�, one obtains four eigenvectors which
build up the spin-� wave function in the superconductor re-
gion �x�0�,8

�S��x� = c1��
�

E−

0

�
� + c2��

E+

�

�

0
��eik+x

+ c3��
E−

− �

�

0
� + c4��

− �

E+

0

�
��e−ik−x. �A3�

Here E�E��, with ��=�E2−�2−�2, ����k̂F�, k+

=k−=kF cos 	S�, and ci� are coefficients of the corresponding
waves. As pointed out by Blonder et al.,18 there is no need to
normalize the coefficients as it just complicates the calcula-
tion. If we set �=J=0 and normalize the coefficients, it will
reduce to the case for a typical N/I/S junction.18,27,31

Since we consider that there is an AF order in the EDSC
side, an incident electron from the FM side will have four
possible reflections.20 The spin-� wave function in the FM
side �x�0� with incident angle 	N� can thus be written
as6,18,27

�N��x� =�
eiqF� cos 	N�x + RN�e−iqF� cos 	N�x

RA�̄eiqF�̄ cos 	A�̄x

RN�
AFeiqF� cos 	N�x

RA�̄
AFe−iqF�̄ cos 	A�̄x

� , �A4�

where RN�, RA�̄, RN�
AF, and RA�̄

AF are amplitudes of NR, AR,
AF-NR, and AF-AR, respectively. Applying the following
boundary conditions:

�N��x��x=0− = �S��x��x=0+
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2mH

�2 �S��x��x=0+ = �d�S��x�
dx

�
x=0+

− �d�N��x�
dx

�
x=0−

,

�A5�

the four reflection amplitudes �coefficients� are solved to be

RN� =
E−�1 − L��1� + 2iZ	�B
�1 + L��1� + 2iZ	�D

−
��1 + L�̄�2�̄ + 2iZ	�A

�1 + L��1� + 2iZ	�D

−
1 − L��1� − 2iZ	

1 + L��1� + 2iZ	

,

RA�̄ =
��1 + L��1� − 2iZ	�B
�1 + L�̄�2�̄ − 2iZ	�D

+
E−�1 − L�̄�2�̄ − 2iZ	�A

�1 + L�̄�2�̄ − 2iZ	�D
,

RN�
AF =

�B

D
,

RA�̄
AF =

�A

D
, �A6�

where

A = 2�L��1��1 − L�L�̄�1��2�̄ + 4Z	
2 + 2iZ	�L��1� + L�̄�2�̄�� ,

B = 2L��1��2L�̄�2�̄E + ��1 + L�̄
2�2�̄

2 �� ,

D = �2��1 − L�L�̄�1��2�̄ + 4Z	
2�2 + 4Z	

2�L��1� + L�̄�2�̄�2�

+ �2L��1�E + 4�Z	
2 + ��1 + L�

2�1�
2 ��

��2L�̄�2�̄E + 4�Z	
2 + ��1 + L�̄

2�2�̄
2 �� . �A7�

Moreover Z	=Z /cos 	S� with the barrier Z=mH /�2kF, �1�

=cos 	N� /cos 	S�, �2�̄=cos 	A�̄ /cos 	S�, and L�

=�qF /kF−��qF /kF��J /EFN�. It is interesting to note in Eq.
�A6� that RN�

AF and RA�̄
AF are proportional to the AF order � as

is expected.

APPENDIX B: MIDGAP SURFACE STATES

Following Ref. 21, we first assume that

�ũl�

ṽl�
� = e−��x�ûl�

v̂l�
� , �B1�

where �� is the attenuation constant for �E�qF���
�����k̂F��2+�2. With Eq. �B1�, Eq. �A2� becomes

E�
û1�

v̂1�̄

û2�

v̂2�̄

� =�
h � � 0

� − h 0 �

� 0 − h − �

0 � − � h
��

û1�

v̂1�̄

û2�

v̂2�̄

� �B2�

for the superconducting overlayer �x�0�. Here h=��� −�J
with ��� = i�2m−1��qF cos 	N�. The wave-vector components
parallel to the interface are conserved for all possible pro-
cesses.

Solving Eq. �B2�, one obtains double degenerate eigen-
values E= ��2+�2+���

2−�J, where + �−� corresponds to
the electron �hole�-like QP excitation. Similar to the wave
function �A3�, superposition of the four eigenstates makes up
the formal wave function for the superconductor overlayer
�x�0�,

�S��x� = c1��
�

E−

0

�
� + c2��

E+

�

�

0
��e−��xeik+x

+ c3��
E−

− �

�

0
� + c4��

− �

E+

0

�
��e−��xe−ik−x.

�B3�

Here E�E��� , with ��� =��E+�J�2−�2−�2, ci are coef-
ficients of the corresponding waves, and k+=k−=kF cos 	S�.
At the interface, the wave functions of FM and supercon-
ductor meet ideal continuity �N��x=0�=�S��x=0�. After
some algebra, the formal wave function for the FM overlayer
is obtained to be �x�0�,

�N��x� = c1��
eik1�x�

e−ik1�xE−

0

eik1�x�
� + c2��

eik1�xE+

e−ik1�x�

e−ik1�x�

0
��eik+x

+ c3��
e−ik1�xE−

− eik1�x�

eik1�x�

0
� + c4��

− e−ik1�x�

eik1�xE+

0

e−ik1�x�
��e−ik−x,

�B4�

where it is assumed that incident spin-� electron has the
wave vector k1� along the x direction. Considering the free
boundary at x=−d, �N��x=−d�=0, one thus obtains the con-
dition for the surface bound states

e−2ik1�dE+ + e2ik1�dE− = 2� . �B5�

CHIU, LIU, AND WU PHYSICAL REVIEW B 79, 064509 �2009�

064509-8



1 R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T.
Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak,
J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85
�1998�.

2 S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhr-
man, Phys. Rev. Lett. 81, 3247 �1998�.

3 R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 �1994�.
4 J. X. Zhu, B. Friedman, and C. S. Ting, Phys. Rev. B 59, 9558

�1999�.
5 J.-X. Zhu and C. S. Ting, Phys. Rev. B 61, 1456 �2000�.
6 S. Kashiwaya, Y. Tanaka, N. Yoshida, and M. R. Beasley, Phys.

Rev. B 60, 3572 �1999�.
7 I. Žutić and O. T. Valls, Phys. Rev. B 60, 6320 �1999�.
8 I. Žutić and O. T. Valls, Phys. Rev. B 61, 1555 �2000�.
9 Z. C. Dong, D. Y. Xing, Z. D. Wang, Z. Zheng, and J. Dong,

Phys. Rev. B 63, 144520 �2001�.
10 Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A.

Anguelouch, G. Xiao, and A. Gupta, Phys. Rev. Lett. 86, 5585
�2001�.

11 G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers,
Phys. Rev. B 63, 104510 �2001�.

12 C. H. Kant, O. Kurnosikov, A. T. Filip, P. LeClair, H. J. M.
Swagten, and W. J. M. de Jonge, Phys. Rev. B 66, 212403
�2002�.

13 P. Raychaudhuri, A. P. Mackenzie, J. W. Reiner, and M. R. Bea-
sley, Phys. Rev. B 67, 020411�R� �2003�.

14 F. Perez-Willard, J. C. Cuevas, C. Surgers, P. Pfundstein, J.
Kopu, M. Eschrig, and H. v. Lohneysen, Phys. Rev. B 69,

140502�R� �2004�.
15 G. T. Woods, R. J. Soulen, I. I. Mazin, B. Nadgorny, M. S.

Osofsky, J. Sanders, H. Srikanth, W. F. Egelhoff, and R. Datla,
Phys. Rev. B 70, 054416 �2004�.

16 S. Mukhopadhyay, P. Raychaudhuri, D. A. Joshi, and C. V.
Tomy, Phys. Rev. B 75, 014504 �2007�.

17 P. Chalsani, S. K. Upadhyay, O. Ozatay, and R. A. Buhrman,
Phys. Rev. B 75, 094417 �2007�.

18 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B
25, 4515 �1982�.

19 J. Linder and A. Sudbo, Phys. Rev. B 75, 134509 �2007�.
20 C. S. Liu and W. C. Wu, Phys. Rev. B 76, 220504�R� �2007�,

and references therein.
21 C.-R. Hu, Phys. Rev. Lett. 72, 1526 �1994�.
22 P. G. de Gennes, Superconductivity of Metals and Alloys �Ben-

jamin, New York, 1966�.
23 J. D. Jackson, Classical Electrodynamics �Wiley, New York,

1975�.
24 M. B. Walker, P. Pairor, and M. E. Zhitomirsky, Phys. Rev. B

56, 9015 �1997�.
25 G. E. Blonder and M. Tinkham, Phys. Rev. B 27, 112 �1983�.
26 I. I. Mazin, Phys. Rev. Lett. 83, 1427 �1999�.
27 S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kajimura, Phys.

Rev. B 53, 2667 �1996�.
28 J. Bar-Sagi and C. G. Kuper, Phys. Rev. Lett. 28, 1556 �1972�.
29 C.-R. Hu, Phys. Rev. B 12, 3635 �1975�.
30 C. Bruder, Phys. Rev. B 41, 4017 �1990�.
31 Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 �1995�.

INTERPLAY BETWEEN ANTIFERROMAGNETIC ORDER… PHYSICAL REVIEW B 79, 064509 �2009�

064509-9


